Properties of initiator-associated transcription mediated by GAL4-VP16.
نویسندگان
چکیده
Transcription associated with a terminal deoxynucleotide transferase gene initiator element is shown to respond to the transcription factor GAL4-VP16 both in vivo and in vitro. High-level transcription requires both an intact initiator element and bound activator. Transcription from this initiator-directed promoter is synergistic in vivo in that five GAL4 DNA binding sites yield 36 times the expression of a single site. Promoters dominated by initiator and TATA elements respond similarly to several GAL4-based activators, including GAL4-Sp1, GAL4-CTF, GAL4(1-147), GAL4-p53, GAL4-C/EBP, and GAL4-ER(EF), as well as GAL4-VP16 and Sp1. These and other similarities suggest that primary activation of TATA- and initiator-dominated promoters occurs at common steps. Since the initial assembly steps do not appear to be common for the two promoter types, the results place interesting constraints on models for how activation occurs.
منابع مشابه
Activation domains of transcription factors mediate replication dependent transcription from a minimal HIV-1 promoter.
Transcription from a minimal HIV-1 promoter containing the three Sp1 binding sites and TATA box can be activated without Tat by template DNA replication. Here we show that this activation can also be mediated by recombinant GAL4 fusion proteins containing the activation domains of Sp1, VP16 or CTF (or by full-length GAL4) targeted to the HIV-1 promoter by replacing the Sp1 sites with five GAL4 ...
متن کاملMechanism of transcriptional antirepression by GAL4-VP16.
Promoter- and enhancer-binding factors appear to function by facilitating the transcription reaction as well as by counteracting chromatin-mediated repression (antirepression). We have examined the mechanism by which a hybrid activator, GAL4-VP16, is able to counteract histone H1-mediated repression by using both H1-DNA complexes and reconstituted H1-containing chromatin templates. The GAL4 DNA...
متن کاملDSIF contributes to transcriptional activation by DNA-binding activators by preventing pausing during transcription elongation
The transcription elongation factor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) regulates RNA polymerase II (RNAPII) processivity by promoting, in concert with negative elongation factor (NELF), promoter-proximal pausing of RNAPII. DSIF is also reportedly involved in transcriptional activation. However, the role of DSIF in transcriptional activation...
متن کاملTranscriptional repression by p53 involves molecular interactions distinct from those with the TATA box binding protein.
In addition to serving a role as a DNA binding-dependent transcriptional activator, p53 has been reported to repress a variety of promoters that lack p53 binding sites. Data from recent studies have suggested that this activity is mediated via an interaction between p53 and the TATA box binding protein (TBP). To investigate the functional relevance of this interaction in vivo, we have performed...
متن کاملFunctional interaction between p53, the TATA-binding protein (TBP), andTBP-associated factors in vivo.
The transcriptional activator p53 is known to interact with components of the general transcription factor TFIID in vitro. To examine the relevance of these associations to transcriptional activation in vivo, plasmids expressing a p53-GAL4 chimera and Drosophila TATA-binding protein (dTBP) were transfected into Drosophila Schneider cells. p53-GAL4 and dTBP displayed a markedly synergistic effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 13 12 شماره
صفحات -
تاریخ انتشار 1993